Image annotation

Suggested def: image annotation is the process of defining metadata to a digital image, e.g. defining regions, marking points, creating textual descriptions, attaching tags to image contents. Can be manual or automatic.

Description

BIIGLE is a web-based software for image and video annotation that enables collaborative research on large datasets. It offers tools for manual and computer-assisted annotation, quality control and the collaboration on custom taxonomies to describe objects. BIIGLE is freely available and can be installed in cloud environments, a local network or on mobile platforms during research expeditions. The public instance on biigle.de is free for non-commercial use.

BIIGLE Logo
Description

AnnotatorJ is a Fiji Plugin to ease annotation of images, particulrly useful for Deep Learning or to validate an alogorithm. Interestingly, it allows annotation for instance segmentation, semantic segmentation, or bounding box annotations. It includes toolssuch as active contours to ease these annotations.

has topic
has function
annotatorJ
Description

webKnossos is an open-source data sharing and annotation platform for tera-scale 2D and 3D image datasets.

The core features of webKnossos are:

  • fast 3D data streaming
  • share links to specific locations in the data
  • uniquely fast skeleton annotation (flight mode) and
  • efficient volume annotation
  • mesh rendering
  • collaboration and sharing tools

webKnossos facilitates image analysis workflows on multi-terabyte datasets, including visualization of raw and multi-modal microscopy data, distributed training data generation and proof-reading of automatic segmentation.

As a scientific resource, webknossos.org serves as a database for published image datasets including their annotations.

 

 

Description

Set of Fiji plugins facilitating the systematic manual annotation of images or image-regions. From a list of user-defined keywords, these plugins generate an easy-to-use graphical interface with buttons or checkboxes for the assignment of single or multiple pre-defined categories to full images or individual regions of interest. In addition to qualitative annotations, any quantitative measurement from the standard Fiji options can also be automatically reported. Besides the interactive user interface, keyboard shortcuts are available to speed-up the annotation process for larger datasets.

The plugins can be installed by activating the Qualitative annotations update site in Fiji.

GUI
Description

This macro toolset offers additional click tools for the rapid annotations of ROI in ImageJ/Fiji.

The ROI 1-click tools can be setup with a predefined shape, and custom actions to perform upon click (Add to ROI Manager, Run Measure, Go to next slice, run a macro command...)

To install in Fiji, just activate the ROI 1-click tools 

Description

MorphoNet is a novel concept of web-based morphodynamic browser to visualise and interact with complex datasets, with applications in research and teaching. 

MorphoNet offers a comprehensive palette of interactions to explore the structure, dynamics and variability of biological shapes and its connection to genetic expressions. 

By handling a broad range of natural or simulated morphological data, it fills a gap which has until now limited the quantitative understanding of morphodynamics and its genetic underpinnings by contributing to the creation of ever-growing morphological atlases.

Description

VAST (Volume Annotation and Segmentation Tool) is a utility application for manual annotation of large EM stacks.

General labeling tool, used for a large variety of 3D data sets; electron-microscopic, multi-channel light-microscopic, and Micro-CT data sets as well as videos, and annotating arbitrary structures, regions and locations, depending on the user’s needs.

Description

online image data management system which supports authenticated image upload, cloud-based storage, project-based management and viewing of standard and whole slide images. One can use different annotation tools to highlight important objects or areas within images. It is the first basic version and new features such as sharing for easy collaboration with your colleagues or first automated analysis applications based on artificial intelligence will be added soon.

Ikosa Portal: multi user image data management

Ikosa Prisma: Automated Image Analysis based on deep learning (available in summer 2019)

Free if limited to 2 users and 1 gigabyte, otherwise montly fees.

 

ikosa
Description

Labkit is an open-source tool to segment truly large image data using sparse training data. It has an intuitive and responsive user interface based on Big Data Viewer, allowing users to conveniently browse and annotate even terabyte sized image volumes.

Update site: Labkit

has topic
need a thumbnail
Description

NeuroMorph is a toolset designed to import, analyze, and visualize mesh models in Blender. It has been developed specifically for the morphological analysis of 3D objects derived from serial electron microscopy images of brain tissue, but much of its functionality can be applied to any 3D mesh. These mesh objects can be generated by any 3D image segmentation software, such as ilastik or Fiji

Description

The software FishInspector provides automatic feature detections in images of zebrafish embryos (body size, eye size, pigmentation). It is Matlab-based and provided as a Windows executable (no matlab installation needed).

The recent version requires images of a lateral position. It is important that the position is precise since deviation may confound with feature annotations. Images from any source can be used. However, depending on the image properties parameters may have to be adjusted. Furthermore, images obtained with normal microscope and not using an automated position system with embryos in glass capillaries require conversion using a KNIME workflow (the workflow is available as well). As a result of the analysis the software provides JSON files that contain the coordinates of the features. Coordinates are provided for eye, fish contour, notochord , otoliths, yolk sac, pericard and swimbladder. Furthermore, pigment cells in the notochord area are detected. Additional features can be manually annotated. It is the aim of the software to provide the coordinates, which may then be analysed subsequently to identify and quantify changes in the morphology of zebrafish embryos.

FishInspector Logo
Description

Biocat is a java based software that allows to perform image classification or segmentation using machine learning. Several algorithm for the classification are available.

has topic
need a thumbnail
Description

ZEN and APEER – Open Ecosystem for integrated Machine-Learning Workflows

Open ecosystem for integrated machine-learning workflows to train and use machine-learning models for image processing and image analysis inside the ZEN software or on the APEER cloud-based platform

Highlights ZEN

  • Simple User Interface for Labeling and Training
  • Engineered Features Sets and Deep Feature Extraction + Random Forrest for Semantic Segmentation
  • Object Classification workflows
  • Probability Thresholds and Conditional Random Fields
  • Import your own trained models as *.czann files (see: czmodel · PyPI)
  • Import "AIModel Containes" from arivis AI for advanced Instance Segmentation
  • Integration into ZEN Measurement Framework
  • Support for Multi-dimensional Datasets and Tile Images
  • open and standardized format to store trained models
ZEN Intellesis Segmentation

ZEN Intellesis Segmentation - Training UI

ZEN Intellesis - Pretrained Networks

ZEN Intellesis Segmentation - Use Deep Neural Networks

Intellesis Object Classification

ZEN Object Classification

Highlights Aarivis AI

  • Web-based tool to label datasets to train Deep Neural Networks
  • Fully automated hyper-parameter tuning
  • Export of trained models for semantic segmentation and AIModelContainer for Instance Segmentation
Annotation Tool

APEER Annotation Tool

Description

OpenImadis stands for Open Image Discovery: A platform for Image Life Cycle Management. It was previously called CID iManage (for Curie Image Database).

No image data conversions, no duplication.

- Uploads data to a secure server in the original format

- Unique id for data

Supports sharing and collaboration with access control

- Allows users to upload, view, update or download data based on their access privileges

Supports multiple ways of attaching meta-information

- Annotations, comments and file attachments

-Analysis results as query-able visual objects

Supports Archiving (data moving to another long-term storage but still searchable)

Facilitates custom visualization and analysis

- Access data from preferred analysis and visualization tools

- Access relevant bits of data to build efficient web and mobile application

Facilitate easy access to analysis and visualization applications hosted on other servers

- Run analysis on dedicated compute clusters

- Access applications hosted and published by other users

Highly Scalable

- Supports on-the-fly addition of server nodes to scale concurrent usage

 

 

openImadis
Description

MaMuT is an end user plugin that combines the BigDataViewer and TrackMate to provide an application that allow browsing, annotating and curating annotations for large image data.

Description

SuRVoS: Super-Region Volume Segmentation workbench

A volume is first partitioned into Super-Regions (superpixels or supervoxels) and then interactively segmented by the user providing training annotations. SuRVoS can then learn from and extend the annotations to the whole volume.

User interface of SuRVoS showing example annotation on soft x-ray tomography data
Description

Advanced Cell Classifier is a data analyzer program to evaluate cell-based high-content screens and tissue section images developed at the Biological Research Centre, Szeged and FIMM, Helsinki (formerly at ETH Zurich). The basic aim is to provide a very accurate analysis with minimal user interaction using advanced machine learning methods.

Advanced Cell Classifier
Description

ASAP is an open source platform for visualizing, annotating and automatically analyzing whole-slide histopathology images. It consists of several key-components (slide input/output, image processing, viewer) which can be used seperately. It is built on top of several well-developed open source packages like OpenSlide, Qt and OpenCV but also tries to extend them in several meaningful ways.

need a thumbnail
Description

QuPath is open source software for Quantitative Pathology. QuPath has been developed as a research tool at Queen's University Belfast.

QuPath
Description

arivis Vision4D is a modular software for working with multi-channel 2D, 3D and 4D images of almost unlimited size independent of available RAM. Many imaging systems, such as high speed confocal, Light Sheet/ SPIM and 2 Photon systems, can produce a huge amount of multi-channel data, which arivis Vision4D handles without constraints. Terabyte ready arivis Vision4D main functionality: Easy import of most image formats from microsopes as well as biological formats High performance interactive 3D / 4D rendering on standard PCs and laptops with 3D Graphics Support Intuitive tools for stitching and alignment to create large multi-dimensional image stacks Immediate 2D, 3D and 4D visualization, annotation and analysis regardless of image size Creation, import, and export of 4D Iso-surfaces Powerful Analysis Pipeline for 3D /4D image analysis (cell segmentation, tracking, annotation, quantitative measurement and statistics, etc) Semi-automatic/manual segmentation and tracking with interactive Track Editor Easy design and export of 3D / 4D High Resolution Movies Seamless integration of custom workflows via Matlab API and Python scripting Data sharing for collaboration A user friendly software, easy to learn and use for any life scientist

need a thumbnail
Description

It is a tool to visualize and annotate volume image data of electron microscopy. Users can annotate objects (e.g. neurons) and skeleton structures. It provides the ability to overlaying the image data with user annotations, representing the spatial structure and the connectivity of labeled objects, and displaying a three dimensional model of it. It can be extended by plugins written in python. A similar, web-based implementation is being developed at webknossos.info. Example datasets are also available.

Annotation in Knossos
Description

Cytomine is a rich internet application using modern web and distributed technologies (Grails, HTML/CSS/Javascript, Docker), databases (spatial SQL and NoSQL), and machine learning (tree-based approaches with random subwindows) to foster active and distributed collaboration and ease large-scale image exploitation.

It provides remote and collaborative principles, rely on data models that allow to easily organize and semantically annotate imaging datasets in a standardized way (using user-defined ontologies associated to regions of interest), efficiently support high-resolution multi-gigapixel images (incl. major digital scanner image formats), and provide mechanisms to readily proofread and share image quantifications produced by any image recognition algorithms.

By emphasizing collaborative principles, the aim of Cytomine is to accelerate scientific progress and to significantly promote image data accessibility and reusability. Cytomine allows to break common practices in this domain where imaging datasets, quantification results, and associated knowledge are still often stored and analyzed within the restricted circle of a specific laboratory.

This software is e.g. being used by life scientists in to help them better evaluate drug treatments or understand biological processes directly from whole-slide tissue images (digital histology), by pathologists to share and ease their diagnosis, and by teachers and students for pathology training purposes. It is also used in various microscopy applications.

Cytomine can be used as a stand-alone application (e.g. on a laptop) or on larger servers for collaborative works.

Cytomine implements object classification, image segmentation, content-based image retrieval, object counting, and interest point detection algorithms using machine learning.

cytomine logo
Description

ITK-SNAP is a software application used to segment structures in 3D medical images. It can also be used as a 3D annotation tool for deep learning. It is based on ITK, VTK libraries.

Description

**Collaborative Annotation Toolkit for Massive Amounts of Image Data** CATMAID is a Collaborative Annotation Toolkit for Massive Amounts of Image Data. It is designed to navigate, share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by GoogleMaps, with which it shares basic navigation concepts, enhanced to allow the exploration of 3D biological image data acquired by optical or physical sectioning microscopy techniques. The interface enables seamless sharing of regions of interest through bookmarks and synchronized navigation through multiple registered data sets. With massive biological image data sets it is unrealistic to create a sustainable centralized repository. A unique feature of CATMAID is its partially decentralized architecture where the presented image data can reside on any Internet accessible server and yet can be easily cross-referenced in the central database. In this way no image data are duplicated and the data producers retain full control over their images. CATMAID is intended to serve as data sharing platform for biologists using high-resolution imaging techniques to probe large specimens. Any high-throughput, high-content imaging project such as gene expression pattern screens would benefit from the interface for data sharing and annotation.

CATMAID
Description

ilastik is a simple, user-friendly tool for interactive image classification, segmentation and analysis. It is built as a modular software framework, which currently has workflows for automated (supervised) pixel- and object-level classification, automated and semi-automated object tracking, semi-automated segmentation and object counting without detection. Most analysis operations are performed lazily, which enables targeted interactive processing of data subvolumes, followed by complete volume analysis in offline batch mode. Using it requires no experience in image processing.

ilastik (the image learning, analysis, and segmentation toolkit) provides non-experts with a menu of pre-built image analysis workflows. ilastik handles data of up to five dimensions (time, 3D space, and spectral dimension). Its workflows provide an interactive experience to give the user immediate feedback on the quality of the results yielded by her chosen parameters and/or labelings.

The most commonly used workflow is pixel classification, which requires very little parameter tuning and instead offers a machine learning technique for segmenting an image based on local image features computed for each pixel.

Other workflows include:

Object classification: Similar to pixel classification, but classifies previously segmented objects by object characteristics in a subsequent step

Autocontext: This workflow improves the pixel classification workflow by running it in multiple stages and showing each pixel the results of the previous stage.

Carving: Semi-automated segmentation of 3D objects (e.g. neurons) based on user-provided seeds

Manual Tracking: Semi-automated cell tracking of 2D+time or 3D+time images based on manual annotations

Automated tracking: Fully-automated cell tracking of 2D+time or 3D+time images with some parameter tuning

Density Counting: Learned cell population counting based on interactively provided user annotation

Strengths: interactive, simple interface (for non-experts), few parameters, larger-than-RAM data, multi-dimensional data (time, 3D space, channel), headless operation, batch mode, parallelized computation, open source

Weaknesses: Pre-built workflows (not reconfigurable), no plugin system, visualization sometimes buggy, must import 3D data to HDF5, tracking requires an external CPLEX installation

Supported Formats: hdf5, tiff, jpeg, png, bmp, pnm, gif, hdr, exr, sif

Description

OMERO is a free, open source image management software. It is client-server based system which supports 5D images, including big images and high-content screening data. Data are stored on a server using relational database. They are accessed using 3 main clients, a desktop client, a web client and a command line tool. There are bindings from OMERO to other image analysis packages, like FLIMfit, OMERO.searcher. The data in OMERO are organized in groups. A user can be a member of one or more groups. This groups can be collaborative or private, there are 4 levels of permissions to access/edit/annotate/delete the data of other users.

The package is supported not only by community forums, but also by a dedicated team which helps users to solve their problems and deals with the bugs submitted via error submission system.

###Strengths

Open source, scalable software, Supports diverse sets of imaging applications and domains (EM,LM, HCS, DigPath) Cross-platform, Java-based application, API support for Java, Python, C++, Django, On-line Forums, Automatic QA and upload of software errors Multi-dimensional images, Web access, Free Demo-server accounts

Limitations

Enterprise-scale software, so complex install, requires expertise, Actively developing API, Python scripts and functions still developing

Omero
Description

This plugin provides a painter to visualize 2D flows. 2D Flows are couples of two sequences, one for the horizontal displacements, the other for the vertical displacements. This plugin provides a painter that draws flow arrows on top of another sequence.

need a thumbnail
Description

Add a layer on an image to display the detections

has function
need a thumbnail
Description

OverlayOutlines is a module from CellProfiler to place outlines of objects over a desired image.

need a thumbnail
Description

This plugin creates a non-destructive grid of lines, crosses or points on the current image or stack. You can specify the grid type (lines, crosses or points), the area per point (in pixels or physical units), and the color.

has topic
Description

TrakEM2 is an ImageJ plugin for morphological data mining, three-dimensional modeling and image stitching, registration, editing and annotation (Fiji comes with TrakEM2). It supports arbitrary-sized datasets. 

Menu of TrakEM2
Description

Label images according to their position in plates. 

has function
Description

paintObjects

has function
need a thumbnail
Description

The Trainable Weka Segmentation is a Fiji plugin that combines a collection of machine learning algorithms with a set of selected image features to produce pixel-based segmentations. Weka (Waikato Environment for Knowledge Analysis) can itself be called from the plugin. It contains a collection of visualization tools and algorithms for data analysis and predictive modeling, together with graphical user interfaces for easy access to this functionality. As described on their wikipedia site, the advantages of Weka include: - freely availability under the GNU General Public License - portability, since it is fully implemented in the Java programming language and thus runs on almost any modern computing platform - a comprehensive collection of data preprocessing and modeling techniques - ease of use due to its graphical user interfaces - Weka supports several standard data mining tasks, more specifically, data preprocessing, clustering, classification, regression, visualization, and feature selection.

The main goal of this plugin is to work as a bridge between the Machine Learning and the Image Processing fields. It provides the framework to use and, more important, compare any available classifier to perform image segmentation based on pixel classification.

has topic