Optical microscopy
Optical microscope
Light microscope



Holovibes is a free software dedicated to the calculation of holograms in real-time. Input interferogram data can be grabbed from a digital camera or loaded from files recorded beforehand. Massive amounts of data can be handled robustly at high throughput, saved to disk, and visualized in real-time without any risk of frame dropping thanks to the use of several configurable input and output memory buffers.

Main features

Image acquisition from several digital cameras or from data files
Choice of hologram rendering method
Blazing-fast hologram rendering
Real-time computation of spectrograms
Hologram autofocus
Image and video post-processing
High throughput saving to disc of massive datasets
Batch recording and communication with remote instruments via GPIB


A PC with at least 8 GB of RAM
Microsoft Windows 7/10 64-bit operating system
A NVidia graphics card (GeForce GTX 700+ series)
NVidia CUDA 9
A supported digital camera, or raw interferogram files

Use case examples

Holographic microscopy
Holographic OCT
Holographic vibrometry
Holographic angiography
Holographic plethysmography

need a thumbnail



The software FishInspector provides automatic feature detections in images of zebrafish embryos (body size, eye size, pigmentation). It is Matlab-based and provided as a Windows executable (no matlab installation needed).

The recent version requires images of a lateral position. It is important that the position is precise since deviation may confound with feature annotations. Images from any source can be used. However, depending on the image properties parameters may have to be adjusted. Furthermore, images obtained with normal microscope and not using an automated position system with embryos in glass capillaries require conversion using a KNIME workflow (the workflow is available as well). As a result of the analysis the software provides JSON files that contain the coordinates of the features. Coordinates are provided for eye, fish contour, notochord , otoliths, yolk sac, pericard and swimbladder. Furthermore, pigment cells in the notochord area are detected. Additional features can be manually annotated. It is the aim of the software to provide the coordinates, which may then be analysed subsequently to identify and quantify changes in the morphology of zebrafish embryos.

FishInspector Logo

ZEN Intellesis Trainable Segmentation


Perform Advanced Image Segmentation and Processing across Microscopy Methods

Overcome the bottleneck of segmenting your Materials Science images and use ZEISS ZEN Intellesis, a module of the digital imaging software ZEISS ZEN.
Independent of the microscope you used to acquire your image data, the algorithm of ZEN Intellesis will provide you with a model for automated segmentation after training. Reuse the model on the same kind of data and beneft from consistent and repeatable segmentation, not influenced by the operator. 
ZEN Intellesis offers a straightforward, ease-to-use workflow that enables every microscope user to perform advanced segmentation tasks rapidly.


  • Simple User Interface for Labelling and Training
  • Integration into ZEN Measurement Framework
  • Support for Multi-dimensional Datasets
  • Use powerful machine learning algorithms for pixel-based classifcation
  • Real Multi-Channel Feature Extraction
  • Engineered Feature Set and Deep Feature Extraction on GPU
  • IP-Function for creating masks an OAD-enabled for advanced automation
  • Powered by ZEN and Python3 using Anaconda Python Distribution
  • Just label objects, train your model and segment your images – there is no need for expert image analysis skills
  • Segment any kind of image data in 2D or 3D. Use data from light, electron, ion or x-ray microscopy, or your mobile phone
  • Speed up your segmentation task by built-in parallelization and GPU (graphics processing unit) acceleration
  • Increase tolerance to low signal-to-noise and artifact-ridden data
  • Seamless integration in ZEN framework and image analysis wizard
  • Data agnostic
  • Compatibility with 2D, 3D and up to 6D datasets
  • Export of multi-channel or labeled images
  • Exchange and sharing of models
  • GPU computing
  • Large data handling
  • Common and well-established machine learning algorithms
  • SW Trial License available

CSBDeep, a toolbox for Content-aware Image Restoration (CARE) in Knime


Deep learning based restoration, with guidelines for training. See also the Fiji plugin.

CSBDeep, a toolbox for Content-aware Image Restoration (CARE) in Fiji


Deep learning for fluorescence image restoration (denoising, deconvolution). Requires training on your data set but the procedure is described.



HyphaTracker Workflow

HyphaTracker propose a workflow for time-resolved analysis of conidia germination. Each part of this workflow can also be used independnatly , as a toolbox. It has been tested on bright-field microscopic images of conidial germination. Its purpose is mainly to identify the germlings and to remove crossing hyphae, and measure the dynamics of their growth.


Spark Stitcher


Reconstruct big images from overlapping tiled images on a Spark cluster.

The code is based on the Stitching plugin for Fiji




ClearVolume is a real-time live 3D visualization library designed for high-end volumetric microscopes such as SPIM and DLSM microscopes. With ClearVolume you can see live on your screen the stacks acquired by your microscope instead of waiting for offline post-processing to give you an intuitive and comprehensive view on your data. The biologists can immediately decide whether a sample is worth imaging. ClearVolume can easily be integrated into existing Java, C/C++, Python, or LabVIEW based microscope software. It has a dedicated interface to MicroManager/OpenSpim/OpenSpin control software. ClearVolume supports multi-channels, live 3D data streaming from remote microscopes, and uses a multi-pass Fibonacci rendering algorithm that can handle large volumes. Moreover, ClearVolume is integrated into the Fiji/ImageJ2/KNIME ecosystem. You can now open your stacks with ClearVolume from within these popular frameworks for offline viewing.

has function



iTrack4U is a Java-based software using ImageJ and jMathPlot libraries, which aims at automatically tracking cells recorded in phase-contrast microscopy. It includes all tools from image files preprocessing, tracking to data extraction and visualization. 


Please cite Cordeliéres et. al. (2013) when using this software package!




CIDRE is a retrospective illumination correction method for optical microscopy. It is designed to correct collections of images by building a model of the illumination distortion directly from the image data. Larger image collections provide more robust corrections. Details of the method are described in

K. Smith, Y. Li, F. Ficcinini, G. Csucs, A. Bevilacqua, and P. Horvath
CIDRE: An Illumination Correction Method for Optical Microscopy, Nature Methods 12(5), 2015, doi:10.1038/NMETH.3323

Illumination correction method