Synonyms
General image analysis

InspectJ

Description

InspectJ is a free ImageJ/FIJI tool to inspect digital image integrity.

InspectJ_v2 is a newer version for advanced users. It applies additional features like histogram equalization and gamma correction for improved image inspections.

need a thumbnail

Microscope autopilot

Description

AutoPilot is the open source project that hosts the general algorithm for fast and robust assessment of local image quality, an automated computational method for image-based mapping of the three-dimensional light-sheet geometry inside a fluorescently labeled biological specimen, and a general algorithm for data-driven optimization of the system state of light-sheet microscopes capable of multi-color imaging with multiple illumination and detection arms.

has function

Find Maxima (Python)

Description

 

Maxima finding algorithm recreated from implementation in Fiji(ImageJ)

This is a re-implementation of the java plugin written by Michael Schmid and Wayne Rasband for ImageJ. The original java code source can be found in: https://imagej.nih.gov/ij/developer/source/ij/plugin/filter/MaximumFinder.java.html 

This implementation remains faithful to the original implementation but is not 100% optimised. The java version is faster but this could be alleviated by compiling c code for parts of the code. This script is simply to provide the functionality of the ImageJ find maxima algorithm to individuals writing pure python script.

find maxima comparison.

2D Gaussian fitting macro (Fiji/ImageJ) for multiple signals.

Description

This script includes a rough feature detection and then fine 2D Gaussian algorithm to fit Gaussians within detected regions. This macro is unique because the ImageJ/Fiji curve fitting API only supports 1-D curve. I get around this by linearising the equation. This implementation is for isotropic (spherical) or anistropic (longer in x/y) diagonally covariant Gaussians but not fully covariant Gaussians (anisotropic and rotated). 

BisQue

Description

Bisque (Bio-Image Semantic Query User Environment) : Store, visualize, organize and analyze images in the cloud. It also allow to run workflows using a set of deployed tools, such as CellProfiler, RootTipMultin Nuclear Tracker, Microtubule tracker etc...

Bisque was developed for the exchange and exploration of biological images.

The Bisque system supports several areas useful for imaging researchers from image capture to image analsysis and querying. The bisque system is centered around a database of images and metadata. Search and comparison of datasets by image data and content is supported. Novel semantic analyses are integrated into the system allowing high level semantic queries and comparison of image content.

  • Bisque is free and open-source
  • Flexible textual and graphical annotations
  • Cloud scalability: PBs of images, millions of annotations
  • Distributed storage: local, iRODS, S3
  • Integrated image analysis, high-throughput with Condor
  • Analysis in MATLAB, Python, Java+ImageJ
  • 100+ biological image formats
  • Very large 5D images (100+ GB)
has topic
bisque screenshot

Galaxy Image Analysis Tools

Description

Image analysis tools to be used within Galaxy

has function
Galaxy imaging workflow

HyphaTracker

Description
HyphaTrackerWorkflow
HyphaTracker Workflow

HyphaTracker propose a workflow for time-resolved analysis of conidia germination. Each part of this workflow can also be used independnatly , as a toolbox. It has been tested on bright-field microscopic images of conidial germination. Its purpose is mainly to identify the germlings and to remove crossing hyphae, and measure the dynamics of their growth.

hyphatracker

kymograph generation

Description

Kymograph generation under ImageJ:

one simple solution, plot a line (ROI line) on the first frame, where you want to generate the kymograph.

Use

Image  / Stacks  / Reslice

It will generate a new image were Y dimension is the time, and X the position on the line you have drawn.

need a thumbnail

MIPAV

Description

The MIPAV (Medical Image Processing, Analysis, and Visualization) application enables quantitative analysis and visualization of medical images of numerous modalities such as PET, MRI, CT, or microscopy. Using MIPAV's standard user-interface and analysis tools, researchers at remote sites (via the internet) can easily share research data and analyses, thereby enhancing their ability to research, diagnose, monitor, and treat medical disorders.