Collection

A collection is a software that encapsulate a set of bioimage components and/or workflows.

Description

A python package for background and shading correction of optical microscopy images


BaSiCPy is a python package for background and shading correction of optical microscopy images. It is developed based on the Matlab version of BaSiC tool with major improvements in the algorithm.

Description

The Plant Computer Vision (PlantCV) software package, is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. 

PlantCV v2 is the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.

PlantCV is composed of modular functions in order to be applicable to a variety of plant types and imaging systems. PlantCV currently supports the analysis of standard RGB color images (aka "VIS"), standard grayscale images (e.g. near-infrared, "NIR"), thermal infrared images, grayscale images from chlorophyll fluorescence imaging systems ("PSII"), and hyperspectral ("ENVI") images. 

Description

BraiAn is an open-source suite of tools designed to simplify signal quantification, analysis and visualization of large datasets typically obtained in whole-brain imaging experiments, following registration to an atlas. 

The package consists of two separate modules.

  1. BrainAnDetect: A QuPath extension for multi-channel cell segmentation across large and variable datasets. It leverages QuPath's built in algorithms for cell detection, and features additional options for refining signal quantification, including machine-learning-based object classification, region-specific cell segmentation, multiple marker co-expression analysis, and an interface for selective exclusion of damaged tissue portions.
  2. BraiAnalyse: A modular Python library for the easy navigation, visualization, and analysis of whole-brain quantification outputs.
has topic
need a thumbnail
Description

Ultrack is a versatile and scalable cell tracking method designed to address the challenges of tracking cells across 2D, 3D, and multichannel timelapse recordings, especially in complex and crowded tissues where segmentation is often ambiguous. By evaluating multiple candidate segmentations and employing temporal consistency, Ultrack ensures robust performance under segmentation uncertainty. Ultrack's methodology is explained here.

(from https://github.com/royerlab/ultrack)

Description

Description from Github page:

A GUI-based Python framework for segmentation, tracking, cell cycle annotations and quantification of microscopy data.
Provides a GUI for neural network models including Segment Anything Model (SAM), YeaZ, cellpose, StarDist, YeastMate, omnipose, delta, DeepSea.

Schematic overview of pipeline and GUI