Stochastic optical reconstruction microscopy (STORM) and related methods achieves sub-diffraction-limit image resolution through sequential activation and localization of individual fluorophores. The analysis of image data from these methods has typically been confined to the sparse activation regime where the density of activated fluorophores is sufficiently low such that there is minimal overlap between the images of adjacent emitters. Recently several methods have been reported for analyzing higher density data, allowing partial overlap between adjacent emitters. However, these methods have so far been limited to two-dimensional imaging, in which the point spread function (PSF) of each emitter is assumed to be identical.

In this work, we present a method to analyze high-density super-resolution data in three dimensions, where the images of individual fluorophores not only overlap, but also have varying PSFs that depend on the z positions of the fluorophores.


need a thumbnail

ZEN Intellesis Trainable Segmentation


Perform Advanced Image Segmentation and Processing across Microscopy Methods

Overcome the bottleneck of segmenting your Materials Science images and use ZEISS ZEN Intellesis, a module of the digital imaging software ZEISS ZEN.
Independent of the microscope you used to acquire your image data, the algorithm of ZEN Intellesis will provide you with a model for automated segmentation after training. Reuse the model on the same kind of data and beneft from consistent and repeatable segmentation, not influenced by the operator. 
ZEN Intellesis offers a straightforward, ease-to-use workflow that enables every microscope user to perform advanced segmentation tasks rapidly.


  • Simple User Interface for Labelling and Training
  • Integration into ZEN Measurement Framework
  • Support for Multi-dimensional Datasets
  • Use powerful machine learning algorithms for pixel-based classifcation
  • Real Multi-Channel Feature Extraction
  • Engineered Feature Set and Deep Feature Extraction on GPU
  • IP-Function for creating masks an OAD-enabled for advanced automation
  • Powered by ZEN and Python3 using Anaconda Python Distribution
  • Just label objects, train your model and segment your images – there is no need for expert image analysis skills
  • Segment any kind of image data in 2D or 3D. Use data from light, electron, ion or x-ray microscopy, or your mobile phone
  • Speed up your segmentation task by built-in parallelization and GPU (graphics processing unit) acceleration
  • Increase tolerance to low signal-to-noise and artifact-ridden data
  • Seamless integration in ZEN framework and image analysis wizard
  • Data agnostic
  • Compatibility with 2D, 3D and up to 6D datasets
  • Export of multi-channel or labeled images
  • Exchange and sharing of models
  • GPU computing
  • Large data handling
  • Common and well-established machine learning algorithms
  • SW Trial License available



Bisque (Bio-Image Semantic Query User Environment) : Store, visualize, organize and analyze images in the cloud. It also allow to run workflows using a set of deployed tools, such as CellProfiler, RootTipMultin Nuclear Tracker, Microtubule tracker etc...

Bisque was developed for the exchange and exploration of biological images.

The Bisque system supports several areas useful for imaging researchers from image capture to image analsysis and querying. The bisque system is centered around a database of images and metadata. Search and comparison of datasets by image data and content is supported. Novel semantic analyses are integrated into the system allowing high level semantic queries and comparison of image content.

  • Bisque is free and open-source
  • Flexible textual and graphical annotations
  • Cloud scalability: PBs of images, millions of annotations
  • Distributed storage: local, iRODS, S3
  • Integrated image analysis, high-throughput with Condor
  • Analysis in MATLAB, Python, Java+ImageJ
  • 100+ biological image formats
  • Very large 5D images (100+ GB)
has topic
bisque screenshot



OpenImadis stands for Open Image Discovery: A platform for Image Life Cycle Management. It was previously called CID iManage (for Curie Image Database).

No image data conversions, no duplication.

- Uploads data to a secure server in the original format

- Unique id for data

Supports sharing and collaboration with access control

- Allows users to upload, view, update or download data based on their access privileges

Supports multiple ways of attaching meta-information

- Annotations, comments and file attachments

-Analysis results as query-able visual objects

Supports Archiving (data moving to another long-term storage but still searchable)

Facilitates custom visualization and analysis

- Access data from preferred analysis and visualization tools

- Access relevant bits of data to build efficient web and mobile application

Facilitate easy access to analysis and visualization applications hosted on other servers

- Run analysis on dedicated compute clusters

- Access applications hosted and published by other users

Highly Scalable

- Supports on-the-fly addition of server nodes to scale concurrent usage






ScientiFig is a free tool to help you create, format or reformat scientific figures. It comes either as a stand alonesoftware, either as a Fiji/IJ plugin.

has topic
has function



Python/C++ port of the ImageJ extension TurboReg/StackReg written by Philippe Thevenaz/EPFL.

A python extension for the automatic alignment of a source image or a stack (movie) to a target image/reference frame.

need a thumbnail

Detection of Molecules - DoM


A collection of components for super resolution image data:

  • Detect Molecules
  • Reconstruct Image
  • Results table
  • Drift correction
  • Chromatic correction

Fourier Bandpass Filter


This is a plugin bundled with native ImageJ.

See IJ reference for more details > Link

need a thumbnail



This note presents the design of a scalable software package named ImagePy for analysing biological images. Our contribution is concentrated on facilitating extensibility and interoperability of the software through decoupling the data model from the user interface. Especially with assistance from the Python ecosystem, this software framework makes modern computer algorithms easier to be applied in bioimage analysis.



It implements the template matching function from the OpenCV library. The java interface of OpenCV was done through the javacv library. It is quite similar as the existing template matching plugin but runs much faster and users could choose among six matching methods: 

1.Squared difference

2.Normalized squared difference


4.Normalized cross-correlation

5.Correlation coefficient

6.Normalized correlation coefficient

The detailed algorithms could be found here.

The cvMatch_Template will search a specific object (image pattern) over an image of interest by the user-specified method.