multi-channel

Description

Fiji is just ImageJ: a distribution of ImageJ (and ImageJ2) together with Java, Java 3D and a lot of plugins organized into a coherent menu structure. The main focus of Fiji is to assist research in life sciences. It is a free, open-source, community-driven project.

Fiji
Description

OMERO is a free, open source image management software. It is client-server based system which supports 5D images, including big images and high-content screening data. Data are stored on a server using relational database. They are accessed using 3 main clients, a desktop client, a web client and a command line tool. There are bindings from OMERO to other image analysis packages, like FLIMfit, OMERO.searcher. The data in OMERO are organized in groups. A user can be a member of one or more groups. This groups can be collaborative or private, there are 4 levels of permissions to access/edit/annotate/delete the data of other users.

The package is supported not only by community forums, but also by a dedicated team which helps users to solve their problems and deals with the bugs submitted via error submission system.

###Strengths

Open source, scalable software, Supports diverse sets of imaging applications and domains (EM,LM, HCS, DigPath) Cross-platform, Java-based application, API support for Java, Python, C++, Django, On-line Forums, Automatic QA and upload of software errors Multi-dimensional images, Web access, Free Demo-server accounts

Limitations

Enterprise-scale software, so complex install, requires expertise, Actively developing API, Python scripts and functions still developing

Omero
Description

Semi-automated cell tracking of 2D+time or 3D+time images based on manual annotations

has function
need a thumbnail
Description

Easy-to-use, computationally efficient, two- and three-dimensional, feature point-tracking tool for the automated detection and analysis of particle trajectories as recorded by video imaging in cell biology. 


The tracking process requires no apriori mathematical modelling of the motion, it is self-initialising, it discriminates spurious detections, and it can handle temporary occlusion as well as particle appearance and disappearance from the image region. 


The plugin is well suited for video imaging in cell biology relying on low-intensity fluorescence microscopy. It allows the user to visualize and analyze the detected particles and found trajectories in various ways:

  • Preview and save detected particles for separate analysis
  • Global non progressive view on all trajectories
  • Focused progressive view on individually selected trajectory
  • Focused progressive view on trajectories in an area of interest

It also allows the user to find trajectories from uploaded particles position and information text files and then to plot particles parameters vs. time - along a trajectory