2D

Description

DropSnake is based on B-spline snakes (active contours) to shape and measure a drop.

has function
Description

 

DeepCell is neural network library for single cell analysis, written in Python and built using TensorFlow and Keras.

DeepCell aids in biological analysis by automatically segmenting and classifying cells in optical microscopy images. This framework consumes raw images and provides uniquely annotated files as an output.

The jupyter session in the read docs are broken, but the one from the GitHub are functional (see usage example )

deepcell
Description

Dragonfly is a software platform for the intuitive inspection of multi-scale multi-modality image data. Its user-friendly experience translates into powerful quantitative findings with high-impact visuals, driven by nuanced easy-to-learn controls.

For segmentation: It provides an engine fior machine Learning, Watershed and superpixel methods, support histological data .

It offers a 3D viewer, and python scripting capacities .

It is free for reserach use, but not for commercial usage.

DragonFly
Description

Protein array is used to analyze protein expressions by screening simultaneously several protein-molecule interactions such as protein-protein and protein-DNA interactions. In most cases, the detection of interactions leads to an image containing numerous lines of spots that will be analyzed by comparing tables of intensity values. To describe the observed different patterns of expression, users generally show histograms with the original associated images [1]. The “Protein Array Analyzer” gives a friendly way to exploit this type of analysis, thus allowing quantification, image modeling and comparative analysis of patterns.

The Protein Array Analyzer, which was programmed in ImageJ’s macro language, is an extention of the Dot Blot Analyzer, [2], [3] a graphically interfaced tool that greatly simplifying analysis of dot arrays.

Description

Multi-template matching can be used to localize multiple objects using one or a set of template images.

Contrary to previous implementations that allow to use only one template, here a set of templates can be used or the initial template(s) can be transformed by rotation/flipping.

Multiple objects detection without redundant detections is possible thanks to a Non-Maxima Supression relying on the degree of overlap between detections.

The solution is available as a Fiji plugin (Multi-Template Matching AND IJ-OpenCV update sites), as a Python package (Multi-Template-Matching on PyPI) and as a KNIME workflow (via KNIME Hub).

need a thumbnail