Windows

Description

CellTracker software is a platform for tracking nuclear and cytoplasmic fluorescence intensities from live cell microscopy time series data.

 

Requires visual C++

Description

Histogram-based background subtractor for ImageJ.

The implemented algorithm is based on the assumption that, compared to the background region, object (foreground) regions are small. The plugin builds local histograms and assumes the most occuring intensity to be part of the background.

Description

Align aligns images relative to each other, for example, to correct shifts in the optical path of a microscope in each channel of a multi-channel set of images.

For two or more input images, this module determines the optimal alignment among them. Aligning images is useful to obtain proper measurements of the intensities in one channel based on objects identified in another channel, for example. Alignment is often needed when the microscope is not perfectly calibrated. It can also be useful to align images in a time-lapse series of images. The module stores the amount of shift between images as a measurement, which can be useful for quality control purposes.

Note that the second image (and others following) is always aligned with respect to the first image. That is, the X/Y offsets indicate how much the second image needs to be shifted by to match the first. This module does not perform warping or rotation, it simply shifts images in X and Y. For more complex registration tasks, you might preprocess images using a plugin for that purpose in FIJI/ImageJ.

| Supports 2D? | Supports 3D? | Respects masks? |
|--------------|--------------|-----------------| | Yes | No | Yes |

Measurements made by this module

  • Xshift, Yshift: The pixel shift in X and Y of the aligned image with respect to the original image.

References

  • Lewis JP. (1995) “Fast normalized cross-correlation.” Vision Interface, 1-7.
has function
Description

## Introduction CellCognition is a computational framework dedicated to the automatic analysis of live cell imaging data in the context of High-Content Screening (HCS). It contains algorithms for segmentation of cells and cellular compartments based on various fluorescent markers, features to describe cellular morphology by both texture and shape, tools for visualizing and annotating the phenotypes, classification, tracking and error correction. Events such as mitosis can be automatically identified and aligned to study the temporal kinetics of various cellular processes during cell cycle. CellCognition can be used by novices in the field of image analysis and is applicable to hundreds of thousands of images by parallelization on compute clusters with minimal effort. The tool has been successfully applied to quantitative phenotypic profiling of cell division, yet machine learning enables CellCognition to be used for the analysis of other dynamic processes. ## Backends Following libraries are used: * numpy * VIGRA * PyQT * hdf5 * matplotlib * sklearn * Machine Learning in Python

Cell Cognition logo