automated structures analysis program (ASAP)

Description

ASAP allows to automatically detect, classify and quantify structures acquired by super resolution microscopy. 

Icy Spot Tracking

Description

Up to version 2 it was known as the ‘Probabilistic particle tracker’ plugin.

need a thumbnail

Icy Label Extractor

has function
need a thumbnail

LBADSA

Description

LBADSA is based on the fitting of the Young-Laplace equation to the image data to measure drops.

has function

DropSnake

Description

DropSnake is based on B-spline snakes (active contours) to shape and measure a drop.

has function

FastSME

Description

FastSME: Faster and Smoother Manifold Extraction From 3D Stack.

3D image stacks are routinely acquired to capture data that lie on undulating 3D manifolds yet processed in 2D by biologists. Algorithms to reconstruct the specimen morphology into a 2D representation from the 3D image volume are employed in such scenarios. In this paper, we present FastSME, which offers several improvements on the baseline SME algorithm which enables accurate 2D representation of data on a manifold from 3D volumes, however is computationally expensive. The improvements are achieved in terms of processing speed (3X-10X speed-up depending on image size), minimizing sensitivity to initialization, and also increases local smoothness of the recovered manifold resulting in better reconstructed 2D composite image. We compare the proposed FastSME against the baseline SME as well as other accessible state-of-the-art tools on synthetic and real microscopy data. Our evaluation on multiple metrics demonstrates the efficiency of the presented method in maintaining fidelity of manifold shape and hence specimen morphology.

has topic
has function

SME

Description

Smooth 2D Manifold Extraction (SME).

Three-dimensional fluorescence microscopy followed by image processing is routinely used to study biological objects at various scales such as cells and tissue. However, maximum intensity projection, the most broadly used rendering tool, extracts a discontinuous layer of voxels, obliviously creating important artifacts and possibly misleading interpretation. Here we propose smooth manifold extraction, an algorithm that produces a continuous focused 2D extraction from a 3D volume, hence preserving local spatial relationships. We demonstrate the usefulness of our approach by applying it to various biological applications using confocal and wide-field microscopy 3D image stacks. We provide a parameter-free ImageJ/Fiji plugin that allows 2D visualization and interpretation of 3D image stacks with maximum accuracy.

has topic
has function
SME

DeepCell

Description

 

DeepCell is neural network library for single cell analysis, written in Python and built using TensorFlow and Keras.

DeepCell aids in biological analysis by automatically segmenting and classifying cells in optical microscopy images. This framework consumes raw images and provides uniquely annotated files as an output.

The jupyter session in the read docs are broken, but the one from the GitHub are functional (see usage example )

deepcell

Neuroglancer

Description

Web based viewer developped for google for very big data: 

Neuroglancer is a WebGL-based viewer for volumetric data. It is capable of displaying arbitrary (non axis-aligned) cross-sectional views of volumetric data, as well as 3-D meshes and line-segment based models (skeletons). The segmentation has to be done before loading the dataset, it is not done Inside the viewer.

This is not an official Google product.

It has among other the nice feature of beeing able to generate url for sharing a specific view.

Note that the only supported browser for now are 

  • Chrome >= 51
  • Firefox >= 46

 

Neuroglancer

3D-Segmentation

Description

Image removed.

need a thumbnail