Component

A Component is an implementation of certain image processing / analysis algorithms.

Each component alone does not solve a Bioimage Analysis problem.

These problems can be addressed by combining such components into workflows.

Description

Quote

Perfect for the beginner, this demo illustrates simple object detection (segmentation, feature extraction), measurement, and filtering. Requires the Image Processing Toolbox (IPT) because it demonstrates some functions supplied by that toolbox, plus it uses the "coins" demo image supplied with that toolbox. If you have the IPT (you can check by typing ver on the command line), you should be able to run this demo code simply by copying and pasting this code into a new editor window, and then clicking the green "run" triangle on the toolbar. First finds all the objects, then filters results to pick out objects of certain sizes. The basic concepts of thresholding, labeling, and regionprops are demonstrated with a simple example.

It's a good tutorial for those users new to MATLAB's image processing capabilities to learn on, before they go on to more sophisticated algorithms.

has function
Description

This Matlab code demonstrates an edge-based active contour model as an application of the Distance Regularized Level Set Evolution (DRLSE) formulation.

initialisation
Description

idTracker is a videotracking software that keeps the correct identity of each individual during the whole video. It works for many animal species including mice, insects (Drosophila, ants) and fish (zebrafish, medaka, stickleback). idTracker distinguishes animals even when humans cannot, such as for size-matched siblings, and reidentifies animals after they temporarily disappear from view or across different videos. It is robust, easy to use and general. Technique details and analyses of several applications are described in Pérez-Escudero et al (2014).

Video protocol: https://www.youtube.com/watch?v=oC9tp5TKAyw

Example image: Example video of 5 zebrafish

has function
Description

Using a text file containing 3D point coordinates as reference pairs, 3D image stack is transformed.

Description

Variational algorithms to remove stationary noise. Application to microscopy imaging. This plugin allows to denoise images degraded with stationary noise. Stationary noise can be seen as a generalization of the standard white noise. Typical applications of this plugin are:

- Standard white noise denoising using a total variation and fidelity term minimization. Even though total variation denoising is not the state of the art (regarding SNR improvement), it may be very valuable for further tasks such as image seg- mentation).

- Destriping (the problem that motivated us to develop these ideas). 

- Deconvolution (even though most users won't be able to use this feature).

- Cartoon + texture decomposition which might be useful to compress images, analyse textures or simplify segmentation like tasks.

has topic
has function