Python

Description

 

DeepCell is neural network library for single cell analysis, written in Python and built using TensorFlow and Keras.

DeepCell aids in biological analysis by automatically segmenting and classifying cells in optical microscopy images. This framework consumes raw images and provides uniquely annotated files as an output.

The jupyter session in the read docs are broken, but the one from the GitHub are functional (see usage example )

deepcell
Description

The PYthon Microscopy Environment is an open-source package providing image acquisition and data analysis functionality for a number of microscopy applications, but with a particular emphasis on single molecule localisation microscopy (PALM/STORM/PAINT etc ...). The package is multi platform, running on Windows, Linux, and OSX.

It comes with 3 main modules:

  • PYMEAcquire - Instrument control and simulation
  • dh5view - Image Data Analysis and Viewing
  • VisGUI - Visualising Localization Data Sets
Description

CellProfiler Analyst (CPA) allows interactive exploration and analysis of data, particularly from high-throughput, image-based experiments. Included is a supervised machine learning system which can be trained to recognize complicated and subtle phenotypes, for automatic scoring of millions of cells. CPA provides tools for exploring and analyzing multidimensional data, particularly data from high-throughput, image-based experiments analyzed by its companion image analysis software, CellProfiler.

CPA
Description

A Python based workflow management software that allows to create workflows that seamlessly scale from a single workstation to a high performance computing cluster or cloud environments. 

Description

Code to segment yeast cells using a pre-trained mask-rcnn model. We've tested this with yeast cells imaged in fluorescent images and brightfield images, and gotten good results with both modalities. This code implements an user-friendly script that hides all of the messy implementation details and parameters. Simply put all of your images to be segmented into the same directory, and then plug and go.

has function