Collective object tracking

Synonyms
Wound healing analysis
Scratch assay analysis
Description
Quote: pyTFM is a python package that allows you to analyze force generation and stresses in cells, cell colonies, and confluent cell layers growing on a 2-dimensional surface. This package implements the procedures of Traction Force Microscopy and Monolayer Stress Microscopy. In addition to the standard measures for stress and force generation, it also includes the line tension, a measure for the force transfer exclusively across cell-cell boundaries. pyTFM includes an addon for the image annotation tool clickpoints allowing you to quickly analyze and vizualize large datasets.
https://pytfm.readthedocs.io/en/latest/_images/mask_force_measures.png
Description

Fluorescence spectroscopy by image correlation is a technique that allows analysing and characterizing the different molecular dynamics from a sequence of fluorescence images. Many image correlation techniques have been developed for different applications but in particular to study the mechanisms of cell adhesion during migration. These techniques can be used with most imaging modalities: e.g. fluorescence widefield, confocal microscopy, TIRFM. They allow to obtain information such as the density in molecules, diffusion coefficients, the presence of several populations, or the direction and speed of a movement corresponding to active transport when spatial and temporal correlations are taken into account (STICS: Spatio-Temporal Image Correlation Spectroscopy).

This plugin is based on ICS_tools plugin by Fitz Elliott, available here: http://www.cellmigration.org/resource/imaging/imaging_resources.shtml  under "cell migration website".

Some bugs have been removed, ROI does not need to be squared, fitting is weighted in order to give more weight to the smaller lags (temporal or spatial)

Exemple of use on sample data [fluorescent beads](http://biii.info/node/2577 "Beads") - Select an ROI, start by ICS to get the right PSF size - Then run TICS and select diffusion, or diffusion plus flow model. Remove the first line (autocorrelation) which corresponds to the noise autocorrelation before fitting.

interface