standalone

Description

Pandore is a standardized library of image processing operators. The current version contains image processing operators that operate on grayscale, color and multispectral, 1D, 2D and 3D images.

Link: Operator Index

has function
Description

An easy to use, image analysis software package that enables rapid exploration and interpretation of microscopy data.

PhenoBrowser
Description

idTracker is a videotracking software that keeps the correct identity of each individual during the whole video. It works for many animal species including mice, insects (Drosophila, ants) and fish (zebrafish, medaka, stickleback). idTracker distinguishes animals even when humans cannot, such as for size-matched siblings, and reidentifies animals after they temporarily disappear from view or across different videos. It is robust, easy to use and general. Technique details and analyses of several applications are described in Pérez-Escudero et al (2014).

Video protocol: https://www.youtube.com/watch?v=oC9tp5TKAyw

Example image: Example video of 5 zebrafish

has function
Description

The rapidSTORM project is an open source evaluation tool that provides fast and highly configurable data processing for single-molecule localization microscopy such as dSTORM. It provides both two-dimensional and three-dimensional, multi-color data analysis as well as a wide range of filtering and image generation capabilities. The general operation of rapidSTORM is described in Wolter et al (2012).

has function
Description

Quote:

Fluorescence in situ hybridization (FISH) is used to study the organization and the positioning of specific DNA sequences within the cell nucleus. Analyzing the data from FISH images is a tedious process that invokes an element of subjectivity. Automated FISH image analysis offers savings in time as well as gaining the benefit of objective data analysis. While several FISH image analysis software tools have been developed, they often use a threshold-based segmentation algorithm for nucleus extraction. As fluorescence signal intensities can vary significantly from experiment to experiment, from cell to cell, and within a cell, threshold based segmentation is inflexible and often insufficient for automatic image analysis, leading to additional manual extraction and potential subjective bias. To overcome these problems, we developed a graphical software tool called FISH Finder to automatically analyze FISH images that vary significantly. By posing the nucleus extraction as a classification problem, compound Bayesian Classifier is employed so that contextual information is utilized, resulting in reliable classification and boundary extraction. This makes it possible to analyze FISH images efficiently and objectively without adjustment of input parameters.

has function