Temporal Medial Filter

Description

This component can be used to find moving foreground features, which can be a powerful way to suppress false background detections in subsequent tracking steps.

set time window, and standard deviations above background for foreground time window should be more than 2x larger than time taken for a feature to traverse a pixel (NB. total window is 2x half-width +1) moving foreground identified by intensity increase relative to background average (i.e. median) for a pixel over a given time window "soft" segmentation, yielding foreground probability related to excess intensity (in standard deviations) over background level crude Anscombe transform applied to data to stabilize the variance

need a thumbnail

Log3D

Description

The freely available software module below is a 3D LoG filter. It applies a LoG (Laplacian of Gaussian or Mexican Hat) filter to a 2D image or to 3D volume. Here, we have a fast implementation. It is a perfect tool to enhance spots, like spherical particles, in noisy images. This module is easy to tune, only by selecting the standard deviations in X, Y and Z directions.

IJ Macro command example

run("LoG 3D", "sigmax=1 sigmay=1 sigmaz=13 displaykernel=0 volume=1");

ImagePy

Description

This note presents the design of a scalable software package named ImagePy for analysing biological images. Our contribution is concentrated on facilitating extensibility and interoperability of the software through decoupling the data model from the user interface. Especially with assistance from the Python ecosystem, this software framework makes modern computer algorithms easier to be applied in bioimage analysis.

PHANTAST for FIJI

Description

 

The phase contrast microscopy segmentation toolbox (PHANTAST) is a collection of open-source algorithms and tools for the processing of phase contrast microscopy (PCM) images. It was developed at University College London's department of Biochemical Engineering and CoMPLEX.

has function

Align slices in stack

Description

Align_slices in stack utilized the template matching function cvMatch_Template to do slice registration(alignment) based on a selected landmark.
This function will try to find the landmark or the most similar image pattern in every slice and translate each slice so that the landmark pattern will be the same position throughout the whole stack. It could be used to fix the drift of a time-lapse image stacks.

Source code: link

Input data: image stack
output data: image stack

has function

Neuroconductor

Description

Neuroconductor is an open-source platform for rapid testing and dissemination of reproducible computational imaging software, specialized in brain medical imaging (MRI, fMRI, DTI, etc...) but that could be used on a wider range of images. The goals of the project are to:

  • provide a centralized repository of R software dedicated to image analysis;
  • disseminate quickly software updates;
  • educate a large, diverse community of scientists using detailed tutorials and short courses;
  • ensure quality via automatic and manual quality controls; and
  • promote reproducibility of image data analysis.

 

Based on the programming language R, Neuroconductor starts with 68 inter-operable packages that cover multiple areas of imaging including visualization, data processing and storage, and statistical inference. Neuroconductor accepts new R package submissions, which are subject to a formal review and continuous automated testing.

has function

Cancer Imaging Phenomics Toolkit (CaPTk)

Description

CaPTk is a software platform for analysis of radiographic cancer images, currently focusing on brain, breast, and lung cancer. CaPTk integrates advanced, validated tools performing various aspects of medical image analysis, that have been developed in the context of active clinical research studies and collaborations toward addressing real clinical needs. With emphasis given in its use as a very lightweight and efficient viewer, and with no prerequisites for substantial computational background, CaPTk aims to facilitate the swift translation of advanced computational algorithms into routine clinical quantification, analysis, decision making, and reporting workflow. Its long-term goal is providing widely used technology that leverages the value of advanced imaging analytics in cancer prediction, diagnosis and prognosis, as well as in better understanding the biological mechanisms of cancer development.

CaPTk

NiftyNet

Description

NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can:

  • Get started with established pre-trained networks using built-in tools;
  • Adapt existing networks to your imaging data;
  • Quickly build new solutions to your own image analysis problems.

Galaxy Image Analysis Tools

Description

Image analysis tools to be used within Galaxy

Galaxy imaging workflow

Galaxy Workbench for Image Analysis

Description

Galaxy instance with tools for Image analyses shipped in a Docker container.

need a thumbnail