Biocat is a java based software that allows to perform image classification or segmentation using machine learning. Several algorithm for the classification are available.

has topic
has function
need a thumbnail



A deep-learning solution for stain color normalization in digital histology images

has function
need a thumbnail

ZEN Intellesis Trainable Segmentation


Perform Advanced Image Segmentation and Processing across Microscopy Methods

Overcome the bottleneck of segmenting your Materials Science images and use ZEISS ZEN Intellesis, a module of the digital imaging software ZEISS ZEN.
Independent of the microscope you used to acquire your image data, the algorithm of ZEN Intellesis will provide you with a model for automated segmentation after training. Reuse the model on the same kind of data and beneft from consistent and repeatable segmentation, not influenced by the operator. 
ZEN Intellesis offers a straightforward, ease-to-use workflow that enables every microscope user to perform advanced segmentation tasks rapidly.


  • Simple User Interface for Labelling and Training
  • Integration into ZEN Measurement Framework
  • Support for Multi-dimensional Datasets
  • Use powerful machine learning algorithms for pixel-based classifcation
  • Real Multi-Channel Feature Extraction
  • Engineered Feature Set and Deep Feature Extraction on GPU
  • IP-Function for creating masks an OAD-enabled for advanced automation
  • Powered by ZEN and Python3 using Anaconda Python Distribution
  • Just label objects, train your model and segment your images – there is no need for expert image analysis skills
  • Segment any kind of image data in 2D or 3D. Use data from light, electron, ion or x-ray microscopy, or your mobile phone
  • Speed up your segmentation task by built-in parallelization and GPU (graphics processing unit) acceleration
  • Increase tolerance to low signal-to-noise and artifact-ridden data
  • Seamless integration in ZEN framework and image analysis wizard
  • Data agnostic
  • Compatibility with 2D, 3D and up to 6D datasets
  • Export of multi-channel or labeled images
  • Exchange and sharing of models
  • GPU computing
  • Large data handling
  • Common and well-established machine learning algorithms
  • SW Trial License available



R wrapper around the OMERO Java Gateway, to enable access to OMERO via R using rJava

has function
need a thumbnail



OpenImadis stands for Open Image Discovery: A platform for Image Life Cycle Management. It was previously called CID iManage (for Curie Image Database).

No image data conversions, no duplication.

- Uploads data to a secure server in the original format

- Unique id for data

Supports sharing and collaboration with access control

- Allows users to upload, view, update or download data based on their access privileges

Supports multiple ways of attaching meta-information

- Annotations, comments and file attachments

-Analysis results as query-able visual objects

Supports Archiving (data moving to another long-term storage but still searchable)

Facilitates custom visualization and analysis

- Access data from preferred analysis and visualization tools

- Access relevant bits of data to build efficient web and mobile application

Facilitate easy access to analysis and visualization applications hosted on other servers

- Run analysis on dedicated compute clusters

- Access applications hosted and published by other users

Highly Scalable

- Supports on-the-fly addition of server nodes to scale concurrent usage




Cell or particle counting and scoring the percentage of stained objects


This one example workflow from the Cell Profiler(CP)  Examples . CP is commonly used to count cells or other objects as well as percent-positives, by measuring the per-cell staining intensity. This pipeline shows how to do both of these tasks, and demonstrates how various modules may be used to accomplish the same result. 

In a few words, it used the IdentifyPrimaryObject module of CellProfiler to detect nuclei from a channel (e.g DAPI), then again the same module on another channel to detect another probe (e.g some particular histone)  .

Then objects (nuclei) are related to the second object (Histone), to create a parent child-relation ship: where nuclei can have histone has child. Nuclei are then filtered according to the property of having histone (positive) or not having histone (negtiveobject) related to them.  If needed, nuclei can be expanded in order to include touching object rather than object inside only.

The percentage of positive nuclei vs total number of nuclei can then be computed using the CalculateMath Module.


Quantification of outer ring diameters of centriole or PCM proteins of cycling HeLa cells in interphase


This workflow can be ran with data from 3D-SIM showing the centrosomes in order to compare the distribution of diameters of rings (or toroids) of different proteins from the centrioles or the peri centriolar material. It aims to reproduce the results of the Nature Cell Biology Paper Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material  from the same data set but with a different analysis method.

It is slightly different from the methods described in the paper itself, where the method was to work on a maximum intensity projection of a 3D-SIM stack, and then to fit circle to the centrioles to estimate the diameters of the toroids.

In this workflow, the images are read from the IDR , then process by thresholding (Maximum entropy auto thresholding with Image J), and processed by Analyze Particles  with different measurement sets, including the bouding box. Then the analysis of diameters and the statistical test are performed using R. All the code and data sets are available, and in the case of this paper have shown a layered organisation of the proteins.

Combined view from Figure 1 Lawo et al.

Detection of Molecules - DoM


A collection of components for super resolution image data:

  • Detect Molecules
  • Reconstruct Image
  • Results table
  • Drift correction
  • Chromatic correction