CAREless

Description

Deep learning based image restoration methods have recently been made available to restore images from under-exposed imaging conditions, increase spatio-temporal resolution (CARE) or self-supervised image denoising (Noise2Void). These powerful methods outperform conventional state-of-the-art methods and leverage down-stream analyses significantly such as segmentation and quantification.

To bring these new tools to a broader platform in the image analysis community, we developed a simple Jupyter based graphical user interface for CARE and Noise2Void, which lowers the burden for non-programmers and biologists to access these powerful methods in their daily routine.  CARE-less supports temporal, multi-channel image and volumetric data and many file formats by using the bioformats library. The user is guided through the different computation steps via inline documentation. For standard use cases, the graphical user interface exposes the most relevant parameters such as patch size and number of training iterations, while expert users still have access to advanced parameters such as U-net depth and kernel sizes. In addition, CARE-less provides visual outputs for training convergence and restoration quality. Any project settings can be stored and reused from command line for processing on compute clusters. The generated output files preserve important meta-data such as pixel sizes, axial spacing and time intervals.

need a thumbnail

ImageM

Description

ImageM integrates into a GUI several algorithms for interactive image processing and analysis. Interface is largely inspired from the open source software "ImageJ".

need a thumbnail

DeepImageJ

Description

DeepImageJ is a user-friendly plugin that enables the use of a variety of pre-trained deep learning models in ImageJ and Fiji. The plugin bridges the gap between deep learning and standard life-science applications. DeepImageJ runs image-to-image operations on a standard CPU-based computer and does not require any deep learning expertise.

Training developper constructs and upload trained model, and made them available to users.

Models are available in a repository here https://deepimagej.github.io/deepimagej/models.html

It is macro recordable. It is advised to luse DeepImageJ on a computer with GPU (CPU will likely be 20x slower)

has topic
deepImageJ

IR tools

Description

A MATLAB Package of Iterative Regularization Methods and Test Problems for Linear Inverse Problems (for Matlab Version 9.3 or later).

need a thumbnail

MorphoNet Python API

Description

The Morphonet Python API provide an easy interface to interact directly with the MorphoNet server. Very useful to upload, download your dataset and superimpose on it any quantitative and quantitative informations.

MorphoNet

Description

MorphoNet is a novel concept of web-based morphodynamic browser to visualise and interact with complex datasets, with applications in research and teaching. 

MorphoNet offers a comprehensive palette of interactions to explore the structure, dynamics and variability of biological shapes and its connection to genetic expressions. 

By handling a broad range of natural or simulated morphological data, it fills a gap which has until now limited the quantitative understanding of morphodynamics and its genetic underpinnings by contributing to the creation of ever-growing morphological atlases.

VAST Lite

Description

VAST (Volume Annotation and Segmentation Tool) is a utility application for manual annotation of large EM stacks.

General labeling tool, used for a large variety of 3D data sets; electron-microscopic, multi-channel light-microscopic, and Micro-CT data sets as well as videos, and annotating arbitrary structures, regions and locations, depending on the user’s needs.

Neuron Tracing Vaa3D (BJUT FM Spanning Tree)

Description

Vaa3d BJUT Fast Marching Spanning Tree algorithm dockerised workflow for BIAFLOWS

need a thumbnail

Filament Tracing LocThresh (ImageJ)

Description

Blood vessels tracing in 3D image from 3D Gaussian blurring (user defined radius), local thresholding (user defined radius and offset) and 3D skeletonization. Dockerized version for BIAFLOWS,

need a thumbnail