Synonyms
Artificial intelligence

Landmark detection LC models training

Description

This workflow trains LC landmark detection models from a dataset of annotated images.

has topic
has function
need a thumbnail

Landmark detection MSET models prediction

Description

This workflow predict landmark positions on images by using MSET landmark detection models.

has topic
has function
need a thumbnail

PyTorch

Description

PyTorch is an open-source machine learning library for Python, based on Torch, used for applications such as natural language processing.

has topic

pyImSegm

Description

Collection of several basic standard image segmentation methods focusing on medical imaging. In particular, the key block/applications are (un)supervised image segmentation using superpixels, object centre detection and region growing with a shape prior. Besides the open-source code, there is also a few sample images.

 

has topic
has function

Labkit

Description

Labkit is an open-source tool to segment truly large image data using sparse training data. It has an intuitive and responsive user interface based on Big Data Viewer, allowing users to conveniently browse and annotate even terabyte sized image volumes.

Update site: Labkit

has topic
need a thumbnail

scikit-learn (sklearn)

Description

Scikit-learn (sklearn) is a python library used for machine learning. sklearn contains simple and efficient tools for data mining and data analysis. Modules and functions include those for classification, regression, clustering, dimensionality reduction, model selection and data preprocessing. Many people have contributed to sklearn (list of authors)

has topic
scikit-learn logo.

3-D Density Kernel Estimation

Description

3-D density kernel estimation (DKE-3-D) method, utilises an ensemble of random decision trees for counting objects in 3D images. DKE-3-D avoids the problem of discrete object identification and segmentation, common to many existing 3-D counting techniques, and outperforms other methods when quantification of densely packed and heterogeneous objects is desired. 

BioCat

Description

Biocat is a java based software that allows to perform image classification or segmentation using machine learning. Several algorithm for the classification are available.

has topic
has function
need a thumbnail

ZEN Intellesis Trainable Segmentation

Description

Perform Advanced Image Segmentation and Processing across Microscopy Methods
 

Overcome the bottleneck of segmenting your Materials Science images and use ZEISS ZEN Intellesis, a module of the digital imaging software ZEISS ZEN.
Independent of the microscope you used to acquire your image data, the algorithm of ZEN Intellesis will provide you with a model for automated segmentation after training. Reuse the model on the same kind of data and beneft from consistent and repeatable segmentation, not influenced by the operator. 
ZEN Intellesis offers a straightforward, ease-to-use workflow that enables every microscope user to perform advanced segmentation tasks rapidly.

Highlights

  • Simple User Interface for Labelling and Training
  • Integration into ZEN Measurement Framework
  • Support for Multi-dimensional Datasets
  • Use powerful machine learning algorithms for pixel-based classifcation
  • Real Multi-Channel Feature Extraction
  • Engineered Feature Set and Deep Feature Extraction on GPU
  • IP-Function for creating masks an OAD-enabled for advanced automation
  • Powered by ZEN and Python3 using Anaconda Python Distribution
  • Just label objects, train your model and segment your images – there is no need for expert image analysis skills
  • Segment any kind of image data in 2D or 3D. Use data from light, electron, ion or x-ray microscopy, or your mobile phone
  • Speed up your segmentation task by built-in parallelization and GPU (graphics processing unit) acceleration
  • Increase tolerance to low signal-to-noise and artifact-ridden data
  • Seamless integration in ZEN framework and image analysis wizard
  • Data agnostic
  • Compatibility with 2D, 3D and up to 6D datasets
  • Export of multi-channel or labeled images
  • Exchange and sharing of models
  • GPU computing
  • Large data handling
  • Common and well-established machine learning algorithms
  • SW Trial License available