Pattern recognition

Description

Biocat is a java based software that allows to perform image classification or segmentation using machine learning. Several algorithm for the classification are available.

has topic
need a thumbnail
Description

It implements the template matching function from the OpenCV library. The java interface of OpenCV was done through the javacv library. It is quite similar as the existing template matching plugin but runs much faster and users could choose among six matching methods: 

1.Squared difference

2.Normalized squared difference

3.Cross-correlation

4.Normalized cross-correlation

5.Correlation coefficient

6.Normalized correlation coefficient

The detailed algorithms could be found here.

The cvMatch_Template will search a specific object (image pattern) over an image of interest by the user-specified method. 

Description

QuantCenter is the framework for 3DHISTECH image analysis applications. with the goal of helping the pathologists to diagnose in an easier way. QuantCenter, is optimized for whole slide quantification. It has a linkable algorithm concept that tries to provide an easy-to-use and logical workflow. The user has different quantification modules that he or she could link one after other to fine-tune or to speed up the analysis.

QuantCenter logo
Description

This is a learnable segmentation algorithm based on ground-truth images and segmentation mask. It learns a multiple output pixel classification algorithm. It downloads from Cytomine-Core annotation images+alphamasks from project(s), build a segmentation (pixel classifier) model which is saved locally. Typical application: tumor detection in tissues in histology slides. It is based on "Fast Multi-Class Image Annotation with Random Subwindows and Multiple Output Randomized Trees" http://orbi.ulg.ac.be/handle/2268/12205 and was used in "A hybrid human-computer approach for large-scale image-based measurements using web services and machine learning" http://orbi.ulg.ac.be/handle/2268/162084?locale=en

Segmentation illustration
Description

This module is for applying classification models on objects. It downloads from Cytomine-Core annotation images and coordinate of annotated objects from project(s) and build a annotation classification model which is saved locally. It downloads from Cytomine-Core annotations images from an image (e.g. detected by an object finder), apply a classification model (previously saved locally), and uploads to Cytomine-Core annotation terms (in a userjob layer).

has topic
has function
need a thumbnail