Image enhancement

Image enhancement is a term used to refer to an operation that increases the quality of the image, being historically more used in the context of contrast enhancement (which improves visualization for the human eye). However, image enhancement is also a very general term that refers to operations that enhance features interest in the image. An image enhancement operation moves further away from the reality, as opposed to Image reconstruction that moves closer to the reality.

Synonyms
Image restoration
Description

We have developed a novel approach, named DF-Tracing, to tackle this challenge. This method first extracts the neurite signal (foreground) from a noisy image by using anisotropic filtering and automated thresholding. Then, DF-Tracing executes a coupled distance-field (DF) algorithm on the extracted foreground neurite signal and reconstructs the neuron morphology automatically. Two distance-transform based “force” fields are used: one for “pressure”, which is the distance transform field of foreground pixels (voxels) to the background, and another for “thrust”, which is the distance transform field of the foreground pixels to an automatically determined seed point. The coupling of these two force fields can“push” a “rolling ball” quickly along the skeleton of a neuron, reconstructing the 3D cell morphology.

Simple Tracing - DT-fields
Description

The module provides biological visual systems models (human visual system and others). It also provides derivated objects that take advantage of those bio-inspired models.

OpenCV Logo
Description

ORION: Online Reconstruction and functional Imaging Of Neurons: segmentation and tracing of neurons for reconstruction.

A project to develop tools that explore single neuron function via sophisticated image analysis. ORION software bridges advanced optical imaging and compartmental modeling of neuronal function by rapidly, accurately, and robustly generating, from structural image data, a cylindrical morphology model suitable for simulating neuronal function. The goal of this project is to develop a computational and experimental framework to allow real-time mapping of functional imaging data (e.g., spatio-temporal patterns of dendritic voltages or intracellularions) to neuronal structure, during the very limited duration of an acute experiment.

ORION_example_result
Description

Computes image Hessian
Based on the algorithm described in the paper below. 

Splines: A Perfect Fit for Signal and Image Processing
M. Unser
IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, November 1999.
 DOI: 10.1109/79.799930
 http://ieeexplore.ieee.org/document/799930/

has function
need a thumbnail
Description

Computes image Laplacian

 

Based on the algorithm described in the paper below. 

Splines: A Perfect Fit for Signal and Image Processing
M. Unser
IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, November 1999.
 DOI: 10.1109/79.799930
 http://ieeexplore.ieee.org/document/799930/

has function
need a thumbnail