Python

Description

This workflow segments glands from H&E stained histopathological images
from the Gland Segmentation Challenge (GlaS2015) using deep learning (UNet).
UNet implementation largely inspired from PyTorch-UNet by Milesial. 

need a thumbnail
Description

Collection of several basic standard image segmentation methods focusing on medical imaging. In particular, the key block/applications are (un)supervised image segmentation using superpixels, object centre detection and region growing with a shape prior. Besides the open-source code, there is also a few sample images.

 

has topic
has function
Description

This workflow processes images of cells with discernible nuclei and outputs a binary mask containing where nuclei are detected.

need a thumbnail
Description

Spimagine is a python package to interactively visualize and process time lapsed volumetric data as generated with modern light sheet microscopes (hence the Spim part). The package provides a generic 3D+t data viewer and makes use of GPU acceleration via OpenCL. If provides further an image processor interface for the GPU accelerated denoising and deconvolution methods of gputools.

It is only for display (no analysis). The only drawback: it does not handle multichannel time lapse 3D data (only one channel at a time).

has function
Spimagine