Rigid registration

Parametric (global) registration restricted to rigid transformations (translation and rotation).

Synonyms
Rigid image registration
Description

quote:

Elastix cite{Klein2010} is an open source, command-line program for intensity-based registration of medical images that allows the user to quickly configure, test, and compare different registration methods. SimpleElastix is an extension of SimpleITK cite{Lowekamp2013} that allows you to configure and run Elastix entirely in Python, Java, R, Octave, Ruby, Lua, Tcl and C# on Linux, Mac and Windows. The goal is to bring robust registration algorithms to a wider audience and make it easier to use elastix, e.g. for Java-based enterprise applications or rapid Python prototyping.

Python example

import SimpleITK as sitk
resultImage = sitk.Elastix(sitk.ReadImage("fixedImage.nii"), sitk.ReadImage("movingImage.nii"))
has topic
Description

Automatic registration in 2D or 3D based on detection or binary mask. Takes images with detections already done on it.

logo autofinder
Description

This plugin allows to compute a similarity (translation/rotation/scaling and flipping) transform from pair of points. It is updating the transformed image interactively such that the user get immediate feedback. The transformation is saved and can be applied to any other stack/image. Non rigid deformation can also be applied in 2D or 3D.

3D/3D,2D/3D or 3D /2D can be handled .

3D ROI are enabled, and can be checked with the 3D vtk view (size of ROI can be changed using the ROI stroke width).

Some prealignment by rotating in 3D the volume is possible.

Transformations can be applied directly or combined through Block Protocols (search for apply transformation).

It's also provide information about the predicted Error (based on statistical prediction), either as a full color mapping, either on each points used as landmarks, and error on the discrepancy in position between points.

There are video tutorials available in the web.

 

logo ec-clem
Description

- 2D Stabilization in each slice of the stacks in time. - 3D Stabilization intravital imaging of all the stacks (including the dimension Z) - create the videos and the stabilized images in a new folder 2701

has function
need a thumbnail
Description

The ICP algorithm takes two point clouds as an input and return the rigid transformation (rotation matrix R and translation vector T), that best aligns the point clouds. Example: [R,T] = icp(q,p,10); Aligns the points of p to the points q with 10 iterations of the algorithm. The transformation is then applied using R*p + repmat(T,1,length(p)); The file has implemented both point to point and point to plane as well as a couple of other features such as extrapolation, weighting functions, edge point rejection, etc.

has function
need a thumbnail