Component

A Component is an implementation of certain image processing / analysis algorithms.

Each component alone does not solve a Bioimage Analysis problem.

These problems can be addressed by combining such components into workflows.

Description

OpenImadis stands for Open Image Discovery: A platform for Image Life Cycle Management. It was previously called CID iManage (for Curie Image Database).

No image data conversions, no duplication.

- Uploads data to a secure server in the original format

- Unique id for data

Supports sharing and collaboration with access control

- Allows users to upload, view, update or download data based on their access privileges

Supports multiple ways of attaching meta-information

- Annotations, comments and file attachments

-Analysis results as query-able visual objects

Supports Archiving (data moving to another long-term storage but still searchable)

Facilitates custom visualization and analysis

- Access data from preferred analysis and visualization tools

- Access relevant bits of data to build efficient web and mobile application

Facilitate easy access to analysis and visualization applications hosted on other servers

- Run analysis on dedicated compute clusters

- Access applications hosted and published by other users

Highly Scalable

- Supports on-the-fly addition of server nodes to scale concurrent usage

 

 

openImadis
Description

ScientiFig is a free tool to help you create, format or reformat scientific figures. It comes either as a stand alonesoftware, either as a Fiji/IJ plugin.

has topic
has function
scientifig
Description

Python/C++ port of the ImageJ extension TurboReg/StackReg written by Philippe Thevenaz/EPFL.

A python extension for the automatic alignment of a source image or a stack (movie) to a target image/reference frame.

need a thumbnail
Description

This component can be used to find moving foreground features, which can be a powerful way to suppress false background detections in subsequent tracking steps.

set time window, and standard deviations above background for foreground time window should be more than 2x larger than time taken for a feature to traverse a pixel (NB. total window is 2x half-width +1) moving foreground identified by intensity increase relative to background average (i.e. median) for a pixel over a given time window "soft" segmentation, yielding foreground probability related to excess intensity (in standard deviations) over background level crude Anscombe transform applied to data to stabilize the variance

need a thumbnail
Description

This is a plugin bundled with native ImageJ.

See IJ reference for more details > Link

need a thumbnail