A workflow is a set of components assembled in some specific order to process bioimages and estimate some numerical parameters relevant to the biological system under study.

Workflows take image data as input and output either processed images or numerical values.

Workflows can be a combination of  components from the same or different software packages.

Wound Healing Tool

Description

The wound healing tool measures the area of a wound in a time series of images of cellular tissue. The tool will measure the area of the wound, i.e. the area that does not contain tissue, in each image. The segmentation is based on the fact that the image is more homogeneous in the region of the wound as in the region of the tissue. Via the options, one of two methods to detect the empty area, can be selected. The first uses edge detection, the second a variance filter. Holes in the detected tissue are filled using morphological operations.

Measure area of the wound

Skin Tools

Description

The skin tools measure the thickness of the epidermis and the interdigitation index. The input images are masks that represent the epidermis and that have been created from images of stained histological sections. The mask must touch the left and right border of the image. The dermal-epidermal border must be on the lower site of the image. The interdigitation index can be measured for one or more segments per image. As a measure of the thickness of the epidermis the lengths of a number of random line segments are measured. The line segments start at the lower border, are perpendicular to the lower border and end at the opposite border of the mask.

See installation Instructions on the website.

Measure thickness from a mask

Adipocyte quantification ImageJ by Baecker

Description

The Adipocytes Tools help to analyze fat cells in images from histological section. This is a rather general cell segmentation approach. It can be adapted to different situations via the parameters. This means that you have to find the right parameters for your application.

Sample Image: [0178_x5_3.tif](http://dev.mri.cnrs.fr/attachments/190/0178_x5_3.tif)

has topic
has function

Adipocyte quantification MATLAB

Description

Analysis of adipocyte number and size. The original code and example images supposed to be discovered at http://webspace.buckingham.ac.uk/klanglands/ but currently the webpage is missing the code and sample images.

has topic
has function

performing automatic registration for CLEM

Description

This is an example workflow of how to perform automatic registration by

- first detecting spots in both image using wavelet segmentation (with different scale according to the image scale)

- second using Ec-Clem autofinder to register both images

Click on a block to know more about a tool. Non referenced tools are non clickable.

testWorkflowtestWorkflowtestWorkflowimage map example
Workflow results

muscleQNT: Muscle fiber counting

Description

A workflow in Python to measure muscule fibers corresponding to the method used in Keefe, A.C. et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat. Commun. 6:7087 doi: 10.1038/ncomms8087 (2015).

 

Example image:

 

muscleQNT/15536_2032_0.tif ...

NeurphologyJ

Description

ImageJ macro for the morphometry of neurites. > NeurphologyJ; it is capable of automatically quantifying neuronal morphology such as soma number and size, neurite length, neurite ending points and attachment points. NeurphologyJ is implemented as a plugin to ImageJ, an open-source Java-based image-processing and analysis platform.

 

InfectionCounter

Description

Estimate the frequency of hepatitis C virus infected cells based on the intensity of viral antigen associated immunofluorescence. 

The core is an ImageJ Macro, so it's easy to modify for one's own needs (Link to the code). 

has topic
has function

3D segmentation (reconstruction) and modeling using Free-D

Description

Free-D (http://free-d.versailles.inra.fr/) is a 3D reconstruction and modeling software. It is multiplatform, free (but not open source) tool for academic research and teaching.

Here is how to proceed, using Free-D:

1. Segmentation:

* load (a collection of) individual 3d stacks

* (optional for serial sections) perform a 2D registration to align image slices

* segment/reconstruct 3D contours using snakes

* segment 3D spots

2. Construct average cell:

* normalize the contours to compute a average cell, by registering/warping 3D contours/surfaces

3. Quantification:

* project each individual cell to the average one

* build density maps to analyze (cartography)

A few notes for current software version (till 10/2016):

* input file format: tiff (not able to import bioformats)

* currently results are saved in customized format, but there is an exportor to convert this format into fiji readable one

* import already generated contours is on the software's TODO list

need a thumbnail