A workflow is a set of components assembled in some specific order to process bioimages and estimate some numerical parameters relevant to the biological system under study.

Workflows take image data as input and output either processed images or numerical values.

Workflows can be a combination of  components from the same or different software packages.

Wound Healing Tool

Bio Image Analyst

The wound healing tool measures the area of a wound in a time series of images of cellular tissue. The tool will measure the area of the wound, i.e. the area that does not contain tissue, in each image. The segmentation is based on the fact that the image is more homogeneous in the region of the wound as in the region of the tissue. Via the options, one of two methods to detect the empty area, can be selected. The first uses edge detection, the second a variance filter. Holes in the detected tissue are filled using morphological operations.

Skin Tools

Bio Image Analyst

The skin tools measure the thickness of the epidermis and the interdigitation index. The input images are masks that represent the epidermis and that have been created from images of stained histological sections. The mask must touch the left and right border of the image. The dermal-epidermal border must be on the lower site of the image. The interdigitation index can be measured for one or more segments per image. As a measure of the thickness of the epidermis the lengths of a number of random line segments are measured.

performing automatic registration for CLEM

Bio Image Analyst

This is an example workflow of how to perform automatic registration by

- first detecting spots in both image using wavelet segmentation (with different scale according to the image scale)

- second using Ec-Clem autofinder to register both images

Click on a block to know more about a tool. Non referenced tools are non clickable.

Spine classification based on kernel density estimation

We propose to use a kernel density estimation (KDE) based approach for classification. This non-parametric approach intrinsically provides the likelihood of membership for each class in a principled manner. The implementation was used in Ghani2016. Any papers using this code should cite Ghani2016 accordingly. The software has been tested under Matlab R2013b.