ATLAS Vesicle segmentation method

Description

Part of ATLAS software

Comment / Instructions: 

You can upload your image at the Mobyle@SERPICO portal and download the result. The workflow is only available online, i.e. no download possible.

AnalyzeSkeleton

Description

This plugin tags all pixel/voxels in a skeleton image and then counts all its junctions, triple and quadruple points and branches, and measures their average and maximum length.

 

he tags are shown in a new window displaying every tag in a different color. You can find it under [Plugins>Skeleton>Analyze Skeleton (2D/3D)]. See Skeletonize3D for an example of how to produce skeleton images.

The voxels are classified into three different categories depending on their 26 neighbors: - End-point voxels: if they have less than 2 neighbors. - Junction voxels: if they have more than 2 neighbors. - Slab voxels: if they have exactly 2 neighbors.

End-point voxels are displayed in blue, slab voxels in orange and junction voxels in purple.

Notice here that, following this notation, the number of junction voxels can be different from the number of actual junctions since some junction voxels can be neighbors of each other.

 

Output data type: table result, image of the skeleton

Image removed.

 

Clustered cell nuclei

Description

One of the principal challenges in counting or segmenting cells or cell nuclei is dealing with clustered objects. To help assess algorithms' performance in this regard, synthetic 3D image sets of HL60 cell line are provided consisting of four subsets with increasing degree of clustering. Each subset is also provided in two diferent levels of quality: high SNR and low SNR.Ground truth is available as well. The datasets are part of [Masaryk University Cell Image Collection (MUCIC)](http://cbia.fi.muni.cz/datasets/) as well [Broad Bioimage Benchmark Collection (BBBC)](https://data.broadinstitute.org/bbbc/) - entry BBBC024.

need a thumbnail

spot detection and codistribution analysis

Description

WASH, Exo84, and cortactin spot detection and codistribution analysis To detect endosomes, an automatic Otsu threshold is applied to the Gaussian-filtered MT1-MMP–positive endosome image (= 1.5 pixels for the sample image). Statistics about each endosome are then saved, for example random positioning of spots can be compared to actual positioning. For each endosome, WASH and Exo84 (or WASH and cortactin) spots are searched for in a neighboring of x pixels in their respective channel. Their number and position are saved per endosome (**see the macro in Text file S2 downloadable from here**).

From the position of WASH and Exo84 (or WASH and cortactin) spots around each endosomes, each WASH spot is paired with its closest Exo84 (or cortactin) spot neighbor, optimized over all spots around this endosome.

This allowed measuring of the distribution of distance between WASH-Exo84 (or WASH-cortactin) spots (**for the co-distribution analysis, see matlab scripts in Zip file S3 downloadable).

endosomes and spot neighbors

Voronoi Segmentation (KNIME)

has topic
need a thumbnail